A Learning Process for Fuzzy Control Rules

نویسندگان

  • F Herrera
  • M Lozano
  • J L Verdegay
چکیده

The purpose of this paper is to present a genetic learning process for learning fuzzy control rules from examples. It is developed in three stages: the rst one is a fuzzy rule genetic generating process based on a rule learning iterative approach, the second one combines two kinds of rules, experts rules if there are and the previously generated fuzzy control rules, removing the redundant fuzzy rules, and the third one is a tuning process for adjusting the membership functions of the fuzzy rules. The three components of the learning process are developed formulating suitable Genetic Algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy rules for fuzzy $overline{X}$ and $R$ control charts

Statistical process control ($SPC$), an internationally recognized technique for improving product quality and productivity, has been widely employed in various industries. $SPC$ relies on the use of control charts to monitor a manufacturing process for identifying causes of process variation and signaling the necessity of corrective action for the process. Fuzzy data exist ubiquitously in the ...

متن کامل

A learning process for fuzzy control rules using genetic algorithms

The purpose of this paper is to present a genetic learning process for learning fuzzy control roles from examples. It is developed in three stages: the first one is a fuzzy rule genetic generating process based on a rule learning iterative approach, the second one combines two kinds of rules, experts rules if there are and the previously generated fuzzy control rules, removing the redundant fuz...

متن کامل

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

A Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System

Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...

متن کامل

Averaged Reward Reinforcement Learning Applied to Fuzzy Rule Tuning

Fuzzy rules for control can be eeectively tuned via reinforcement learning. Reinforcement learning is a weak learning method, which only requires information on the success or failure of the control application. The tuning process allows people to generate fuzzy rules which are unable to accurately perform control and have them tuned to be rules which provide smooth control. This paper explores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995